Source code for pymanopt.manifolds.fixed_rank

import collections

import numpy as np

from pymanopt.manifolds.manifold import RiemannianSubmanifold
from pymanopt.manifolds.stiefel import Stiefel
from pymanopt.tools import ndarraySequenceMixin, return_as_class_instance


[docs]class FixedRankEmbedded(RiemannianSubmanifold): r"""Manifold of fixed rank matrices. Args: m: The number of rows of matrices in the ambient space. n: The number of columns of matrices in the ambient space. k: The rank of matrices. The manifold of ``m x n`` real matrices of fixed rank ``k``. For efficiency purposes, points on the manifold are represented with a truncated singular value decomposition instead of full matrices of size ``m x n``. Specifically, a point is represented as a tuple ``(u, s, vt)`` of three arrays. The arrays ``u``, ``s`` and ``vt`` have shapes ``(m, k)``, ``(k,)`` and ``(k, n)``, respectively, and the rank ``k`` matrix which they represent can be recovered by the product ``u @ np.diag(s) @ vt``. Vectors ``Z`` in the ambient space are best represented as arrays of shape ``(m, n)``. If these are low-rank, they may also be represented as tuples of arrays ``(U, S, V)`` such that ``Z = U @ S @ V.T``. There are no restrictions on what ``U``, ``S`` and ``V`` are, as long as their product as indicated yields a real ``m x n`` matrix. Tangent vectors are represented as tuples of the form ``(Up, M, Vp)``. The matrices ``Up`` (of size ``m x k``) and ``Vp`` (of size ``n x k``) obey the conditions ``np.allclose(Up.T @ U, 0)`` and ``np.allclose(Vp.T @ V, 0)``. The matrix ``M`` (of size ``k x k``) is arbitrary. Such a structure corresponds to the tangent vector ``Z = u @ M @ vt + Up @ vt + u * Vp.T`` in the ambient space of ``m x n`` matrices at a point ``(u, s, vt)``. The chosen geometry yields a Riemannian submanifold of the embedding space :math:`\R^{m \times n}` equipped with the usual trace inner product. Note: * The implementation follows the embedded geometry described in [Van2013]_. * The class is currently not compatible with the :class:`pymanopt.optimizers.trust_regions.TrustRegions` optimizer. * Details on the implementation of :meth:`euclidean_to_riemannian_gradient` can be found at https://j-towns.github.io/papers/svd-derivative.pdf. * The second-order retraction follows results presented in [AM2012]_. """ def __init__(self, m: int, n: int, k: int): self._m = m self._n = n self._k = k self._stiefel_m = Stiefel(m, k) self._stiefel_n = Stiefel(n, k) name = f"Embedded manifold of {m}x{n} matrices of rank {k}" dimension = (m + n - k) * k super().__init__(name, dimension, point_layout=3) @property def typical_dist(self): return self.dim
[docs] def inner_product(self, point, tangent_vector_a, tangent_vector_b): return np.sum( [ np.tensordot(a, b) for (a, b) in zip(tangent_vector_a, tangent_vector_b) ] )
def _apply_ambient(self, vector, matrix): if isinstance(vector, (list, tuple)): return vector[0] @ vector[1] @ vector[2].T @ matrix return vector @ matrix def _apply_ambient_transpose(self, vector, matrix): if isinstance(vector, (list, tuple)): return vector[2] @ vector[1] @ vector[0].T @ matrix return vector.T @ matrix
[docs] def projection(self, point, vector): """Project vector in the ambient space to the tangent space. Args: point: A point on the manifold. vector: A vector in the ambient space. Returns: A tangent vector parameterized as a ``(Up, M, Vp)``. Note: The argument ``vector`` must either be an array of shape ``(m, n)`` in the ambient space, or else a tuple ``(U, S, V)`` where ``U @ S @ V`` is in the ambient space (of low-rank matrices). """ ZV = self._apply_ambient(vector, point[2].T) UtZV = point[0].T @ ZV ZtU = self._apply_ambient_transpose(vector, point[0]) Up = ZV - point[0] @ UtZV M = UtZV Vp = ZtU - point[2].T @ UtZV.T return _FixedRankTangentVector(Up, M, Vp)
[docs] def euclidean_to_riemannian_gradient(self, point, euclidean_gradient): u, s, vt = point du, ds, dvt = euclidean_gradient utdu = u.T @ du uutdu = u @ utdu Up = (du - uutdu) / s vtdv = vt @ dvt.T vvtdv = vt.T @ vtdv Vp = (dvt.T - vvtdv) / s identity = np.eye(self._k) f = 1 / (s[np.newaxis, :] ** 2 - s[:, np.newaxis] ** 2 + identity) M = ( f * (utdu - utdu.T) * s + s[:, np.newaxis] * f * (vtdv - vtdv.T) + np.diag(ds) ) return _FixedRankTangentVector(Up, M, Vp)
[docs] def retraction(self, point, tangent_vector): u, s, vt = point du, ds, dvt = tangent_vector Qu, Ru = np.linalg.qr(du) Qv, Rv = np.linalg.qr(dvt) T = np.vstack( ( np.hstack((np.diag(s) + ds, Rv.T)), np.hstack((Ru, np.zeros((self._k, self._k)))), ) ) # Numpy svd outputs St as a 1d vector, not a matrix. Ut, St, Vt = np.linalg.svd(T, full_matrices=False) U = np.hstack((u, Qu)) @ Ut[:, : self._k] S = St[: self._k] + np.spacing(1) V = np.hstack((vt.T, Qv)) @ Vt.T[:, : self._k] return _FixedRankPoint(U, S, V.T)
[docs] def norm(self, point, tangent_vector): return np.sqrt( self.inner_product(point, tangent_vector, tangent_vector) )
[docs] def random_point(self): u = self._stiefel_m.random_point() s = np.sort(np.random.uniform(size=self._k))[::-1] vt = self._stiefel_n.random_point().T return _FixedRankPoint(u, s, vt)
[docs] def to_tangent_space(self, point, vector): u, _, vt = point Up = vector.Up - u @ u.T @ vector.Up Vp = vector.Vp - vt.T @ vt @ vector.Vp return _FixedRankTangentVector(Up, vector.M, Vp)
[docs] def random_tangent_vector(self, point): Up = np.random.normal(size=(self._m, self._k)) Vp = np.random.normal(size=(self._n, self._k)) M = np.random.normal(size=(self._k, self._k)) tangent_vector = self.to_tangent_space( point, _FixedRankTangentVector(Up, M, Vp) ) return tangent_vector / self.norm(point, tangent_vector)
[docs] def embedding(self, point, tangent_vector): u, _, vt = point U = np.hstack((u @ tangent_vector.M + tangent_vector.Up, u)) S = np.eye(2 * self._k) V = np.hstack(([vt.T, tangent_vector.Vp])) return U, S, V
[docs] def transport(self, point_a, point_b, tangent_vector_a): return self.projection( point_b, self.embedding(point_a, tangent_vector_a) )
[docs] def zero_vector(self, point): return _FixedRankTangentVector( np.zeros((self._m, self._k)), np.zeros((self._k, self._k)), np.zeros((self._n, self._k)), )
class _ndarraySequence(ndarraySequenceMixin): @return_as_class_instance def __mul__(self, other): return [other * s for s in self] __rmul__ = __mul__ @return_as_class_instance def __truediv__(self, other): return [val / other for val in self] @return_as_class_instance def __neg__(self): return [-val for val in self] class _FixedRankPoint( _ndarraySequence, collections.namedtuple( "_FixedRankPointTuple", field_names=("u", "s", "vt") ), ): pass class _FixedRankTangentVector( _ndarraySequence, collections.namedtuple( "_FixedRankTangentVectorTuple", field_names=("Up", "M", "Vp") ), ): @return_as_class_instance def __add__(self, other): return [s + o for (s, o) in zip(self, other)] @return_as_class_instance def __sub__(self, other): return [s - o for (s, o) in zip(self, other)]